Nicotinamide and WLDS Act Together to Prevent Neurodegeneration in Glaucoma

نویسندگان

  • Pete A. Williams
  • Jeffrey M. Harder
  • Nicole E. Foxworth
  • Brynn H. Cardozo
  • Kelly E. Cochran
  • Simon W. M. John
چکیده

Glaucoma is a complex neurodegenerative disease characterized by progressive visual dysfunction leading to vision loss. Retinal ganglion cells are the primary affected neuronal population, with a critical insult damaging their axons in the optic nerve head. This insult is typically secondary to harmfully high levels of intraocular pressure (IOP). We have previously determined that early mitochondrial abnormalities within retinal ganglion cells lead to neuronal dysfunction, with age-related declines in NAD (NAD+ and NADH) rendering retinal ganglion cell mitochondria vulnerable to IOP-dependent stresses. The Wallerian degeneration slow allele, WldS , decreases the vulnerability of retinal ganglion cells in eyes with elevated IOP, but the exact mechanism(s) of protection from glaucoma are not determined. Here, we demonstrate that WldS increases retinal NAD levels. Coupled with nicotinamide administration (an NAD precursor), it robustly protects from glaucomatous neurodegeneration in a mouse model of glaucoma (94% of eyes having no glaucoma, more than WldS or nicotinamide alone). Importantly, nicotinamide and WldS protect somal, synaptic, and axonal compartments, prevent loss of anterograde axoplasmic transport, and protect from visual dysfunction as assessed by pattern electroretinogram. Boosting NAD production generally benefits major compartments of retinal ganglion cells, and may be of value in other complex, age-related, axonopathies where multiple neuronal compartments are ultimately affected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protection of vincristine-induced neuropathy by WldS expression and the independence of the activity of Nmnat1.

The slow Wallerian degeneration protein (WldS), a fusion protein containing amino-terminal E4B and full-length nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1), delays axon degeneration caused by physical damages, toxins and genetic mutations which result in patients being diagnosed with neurodegenerative diseases. It is still controversial whether the suppression of axonal degenerati...

متن کامل

Local axonal protection by WldS as revealed by conditional regulation of protein stability.

The expression of the mutant Wallerian degeneration slow (WldS) protein significantly delays axonal degeneration from various nerve injuries and in multiple species; however, the mechanism for its axonal protective property remains unclear. Although WldS is localized predominantly in the nucleus, it also is present in a smaller axonal pool, leading to conflicting models to account for the WldS ...

متن کامل

Tracking in the Wlds—The Hunting of the SIRT and the Luring of the Draper

Wallerian degeneration of distal axons after nerve injury is significantly delayed in the Wlds mutant mouse. The Wlds protein is a fusion of nicotinamide mononucleotide adenyltransferase-1 (Nmnat1), an essential enzyme in the biosynthesis pathway of nicotinamide adenine dinucleotide (NAD), with the N-terminal 70 amino acids of the Ube4b ubiquitination assembly factor. The mechanism of Wlds acti...

متن کامل

Acute Axonal Degeneration Drives Development of Cognitive, Motor, and Visual Deficits after Blast-Mediated Traumatic Brain Injury in Mice

Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain (WldS) of m...

متن کامل

Design of a novel quantitative PCR (QPCR)-based protocol for genotyping mice carrying the neuroprotective Wallerian degeneration on slow (Wlds) gene

Background: Mice carrying the spontaneous genetic mutation known as Wallerian degeneration slow (Wlds) have a unique neuroprotective phenotype, where axonal and synaptic compartments of neurons are protected from degeneration following a wide variety of physical, toxic and inherited disease-inducing stimuli. This remarkable phenotype has been shown to delay onset and progression in several mous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017